Abstract

The production of CH3 OH from the photocatalytic CO2 reduction reaction (PCRR) presents a promising route for the clean utilization of renewable resources, but charge recombination, an unsatisfying stability and a poor selectivity limit its practical application. In this paper, we present the design and fabrication of 0D/2D materials with polymeric C3 N4 nanosheets and CdSe quantum dots (QDs) to enhance the separation and reduce the diffusion length of charge carriers. The rapid outflow of carriers also restrains self-corrosion and consequently enhances the stability. Furthermore, based on quantum confinement effects of the QDs, the energy of the electrons could be adjusted to a level that inhibits the hydrogen evolution reaction (HER, the main competitive reaction to PCRR) and improves the selectivity and activity for CH3 OH production from the PCRR. The band structures of photocatalysts with various CdSe particle sizes were also investigated quantitatively to establish the relationship between the band energy and the photocatalytic performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call