Abstract

There is a revival of the interest in adjoint sensitivity analysis techniques. This is partly because current computer-aided-design software based on full-wave electromagnetic (EM) solvers remains too slow for the purposes of practical high-frequency structure design despite the increasing capacity of computers. The adjoint-variable methods for design sensitivity analysis offer computational speed and accuracy. They can be used for efficient gradient-based optimization, in tolerance and yield analysis. Adjoint-based sensitivity analysis for circuits has been well studied and extensively covered in the microwave literature. In comparison, sensitivities with full-wave analysis techniques have attracted little attention, and there have been few applications into feasible and versatile algorithms. We review adjoint-variable methods used in high-frequency structure design with both circuit analysis techniques and full-wave EM analysis techniques. A brief discussion on adjoint-based sensitivity analysis for nonlinear dynamic systems is also included.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.