Abstract
Abstract. Backward probabilities, such as the backward travel time probability density function for pollutants in natural aquifers/rivers, have been used by hydrologists for decades in water quality applications. Calculating these backward probabilities, however, is challenging due to non-Fickian pollutant transport dynamics and velocity resolution variability at study sites. To address these issues, we built an adjoint model by deriving a backward-in-time fractional-derivative transport equation subordinated to regional flow, developed a Lagrangian solver, and applied the model/solver to trace pollutant transport in diverse flow systems. The adjoint model subordinates to a reversed regional flow field, transforms forward-in-time boundaries into either absorbing or reflective boundaries, and reverses the tempered stable density to define backward mechanical dispersion. The corresponding Lagrangian solver efficiently projects backward super-diffusive mechanical dispersion along streamlines. Field applications demonstrate the adjoint subordination model's success with respect to recovering release history, groundwater age, and pollutant source locations for various flow systems. These include systems with upscaled constant velocity, nonuniform divergent flow fields, or fine-resolution velocities in a nonstationary, regional-scale aquifer, where non-Fickian transport significantly affects pollutant dynamics and backward probabilities. Caution is needed when identifying the phase-sensitive (aqueous vs. absorbed) pollutant source in natural media. The study also explores possible extensions of the adjoint subordination model for quantifying backward probabilities of pollutants in more complex media, such as discrete fracture networks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.