Abstract
This work details a comparative analysis of six methods for computing the transient system response and adjoint design derivatives of a nonlinear structure under a periodic external actuation. Time marching via implicit integration, a time-periodic spectral element method, and a time-periodic finite difference method are all considered, each with or without POD-based model reduction of the system of equations. Details of each method, and the concomitant adjoint sensitivities, are provided in terms of accuracy, stability, and Jacobian sparsity patterns. Each method is used for a gradient-based optimization of a nonlinear planar beam, periodically actuated at its root, subject to a large number of structural design parameters. The method with the lowest computational design cost is found to be a strong function of the harmonic content and the nonlinearity of the transient response.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.