Abstract

Adjoint methods have become fundamental ingredients of the scientific computing toolbox over the past decades. Large-scale parameter sensitivity analysis, uncertainty quantification, and nonlinear optimization would otherwise turn out computationally infeasible. The symbolic derivation of adjoint mathematical models for relevant problems in science and engineering and their implementation in consistency with the implementation of the underlying primal model frequently proves highly challenging. Hence, an increased interest in algorithmic adjoints can be observed. The algorithmic derivation of adjoint numerical simulation programs shifts some of the problems faced from functional and numerical analysis to computer science. It becomes a highly complex software engineering task requiring expertise in software analysis, transformation, and optimization. Despite rather mature software tool support for algorithmic differentiation, substantial user intervention is typically required when targeting nontrivial numerical programs. A large number of patterns shared by numerous application codes results in repeated duplication of development effort. The adjoint code design patterns introduced in this article aim to reduce this problem through improved formalization from the software engineering perspective. Fully functional reference implementations are provided through github.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.