Abstract
CdS has emerged as a possible candidate for photocatalytic hydrogen generation. However, further improvement in the performance of the Cd metal site is challenging due to limited optimization space. To solve this limitation, in this work, the Mn-Cd dual-metal photocatalyst was synthesized by a one-step solvothermal method, and the effects of different proportions of bimetals on hydrogen production activity were systematically studied. The ingenious design of the bimetallic sites enhances the carrier separation efficiency and the built-in electric field intensity, which leads to significant improvement in the photocatalytic hydrogen production performance of MCS0.19. Density functional theory (DFT) calculations confirm that the introduction of the Mn element can drive electrons through the Fermi level, resulting in enhanced conductivity of the catalyst. Meanwhile, electron channels are built between Mn and S, which speeds up the rate of electron transfer and is conducive to improving hydrogen production activity. This work provides a technical-methodological entrance to improve the photocatalytic hydrogen production performance of dual-metal S solid solutions and also promises to open a novel approach to creating high-efficiency solid solution photocatalysts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.