Abstract

BackgroundAdipose tissue inflammation is considered as one of the major mechanisms underlying the pathogenesis of insulin resistance and complications in diabetes. Here, we aimed to study the effects of adipose-derived stromal cells on diabetes-induced insulin resistance and M1 cytokine expression.MethodsStromal vascular fractions (SVFs) purified from the inguinal adipose tissue of diabetic mice were treated with plasma from either nondiabetic (Lepr+/+) or diabetic (Leprdb/db) mice and injected into the inguinal white adipose tissue of Leprdb/db mice.ResultsWe found that diabetic plasma treatment induced, whereas nondiabetic plasma suppressed TNF-α, IL-1β, and dipeptidyl peptidase 4 (DPP4) mRNA expression in SVFs in vitro. Importantly, the injection of nondiabetic plasma-treated SVFs significantly decreased TNF-α, IL-6, IL-1β, CCL2, and IL-33 and induced IL-10 mRNA expression in adipose tissue of Leprdb/db mice in vivo. Furthermore, we observed that nondiabetic plasma-treated SVFs increased mRNA expression of Foxp3 in adipose tissue macrophages and Foxp3 in adipose CD4+ T cells, decreased CD11b+CD11c+ cells in adipose tissue, and suppressed mRNA expression of ICAM-1, FCM3, IL-6, IL-1β, iNOS, TNF-α, and DPP4 as well as protein expression of DPP4 and phosphorylated JNK and NF-κB in the liver of Leprdb/db mice. Moreover, we found that nondiabetic plasma-treated SVFs increased Akt activation following insulin administration and attenuated glucose intolerance in Leprdb/db mice.ConclusionsOur results demonstrate that nondiabetic plasma inhibits M1 but increases M2 cytokine expression in adipose tissue of diabetic mice. Most importantly, our findings reveal that nondiabetic plasma-treated SVFs are capable of mitigating diabetes-induced plasma DPP4 activity, liver inflammation, and insulin resistance and that may be mediated through suppressing M1 cytokines but increasing IL-10 and Tregs in adipose tissue. Altogether, our findings suggest that adipose stromal cell-based therapy could potentially be developed as an efficient therapeutic strategy for the treatment of diabetes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call