Abstract
All nuclear-encoded mRNAs contain a 5' cap structure (m7GpppN, where N is any nucleotide), which is recognized by the eukaryotic translation initiation factor 4E (eIF4E) subunit of the eIF4F complex. The eIF4E-binding proteins constitute a family of three polypeptides that reversibly repress cap-dependent translation by binding to eIF4E, thus preventing the formation of the eIF4F complex. We investigated the biological function of 4E-BP1 by disrupting its gene (Eif4ebp1) in the mouse. Eif4ebp1-/- mice manifest markedly smaller white fat pads than wild-type animals, and knockout males display an increase in metabolic rate. The males' white adipose tissue contains cells that exhibit the distinctive multilocular appearance of brown adipocytes, and expresses the uncoupling protein 1 (UCP1), a specific marker of brown fat. Consistent with these observations, translation of the peroxisome proliferator-activated receptor-gamma co-activator 1 (PGC1), a transcriptional co-activator implicated in mitochondrial biogenesis and adaptive thermogenesis, is increased in white adipose tissue of Eif4ebp1-/- mice. These findings demonstrate that 4E-BP1 is a novel regulator of adipogenesis and metabolism in mammals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.