Abstract
Increasing adiposity predisposes to the development of the metabolic syndrome, in part, through adipose tissue dysregulation and inflammation. In addition, offspring nutrient restricted (NR) in utero can exhibit an increased risk of early-onset insulin resistance and obesity, although the mechanisms remain unclear. We aimed to: 1) define adipose tissue ontogeny of key proinflammatory and endoplasmic reticulum stress gene expression from late fetal to early adult life and 2) examine the impact on these genes in gestational nutrient restriction. Pregnant sheep were fed 100% (control) or 50% (NR) of their nutritional requirements between early to mid (28–80 d, term ∼147 d) or late (110–147 d) gestation. In control offspring, toll-like receptor 4 (TLR4), and the macrophage marker CD68, peaked at 30 d of life before declining. IL-18 peaked at 6 months of age, whereas the endoplasmic reticulum chaperone glucose-regulated protein 78 peaked at birth and subsequently declined through postnatal life. TLR4 and CD68 positively correlated with relative adipose tissue mass and with each other. Early to midgestational NR offspring had decreased abundance of IL-18 at 6 months of age. In late gestational NR offspring, CD68 was significantly lower at birth, a pattern that reversed in juvenile offspring, coupled with increased TLR4 abundance. In conclusion, the in utero nutritional environment can alter the adipose tissue inflammatory profile in offspring. This may contribute to the increased risk of insulin resistance or obesity, dependent on the timing of nutrient restriction. Establishing the optimal maternal diet during pregnancy could reduce the burden of later adult disease in the offspring.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The Journal of Clinical Endocrinology & Metabolism
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.