Abstract
Diabetic foot ulcers (DFUs) cause prominent morbidity and mortality. Adipose mesenchymal stem cell (ASC)-derived extracellular vesicles (EVs) show property in facilitating diabetic wound healing, and we explored their role in DFU rats. ASCs were cultured in vitro, passaged and then identified by flow cytometry and induction of osteogenic/adipogenic differentiation. ASC-EVs were extracted and identified. DFU rat model was treated with ASC-EVs. High glucose (HG)-induced rat dermal fibroblasts were treated with ASC-EVs or 3-MA and sh-PINK1 plasmid in vitro. Wound healing was observed. Histological changes, inflammatory cytokines (TNF-α, IL-1β), and α-SMA and p21 double-positive cell level were assessed by HE staining, ELISA, and immunofluorescence. Mitochondrial membrane potential (MMP), cell viability and senescence, and ROS production in cells were assessed by fluorescence dye JC-1, CCK-8, SA-β-gal staining, and ROS kit. p21, LC3II/I, p62, PINK1 and parkin protein levels were determined by Western blot. DFU rats had slow wound healing and elevated levels of IL-1β, TNF-α, α-SMA and p21 double-positive cells, and SA-β-gal, while HG-induced cells had weakened viability, elevated ROS, SA-β-gal, p21 and p62 protein levels, and decreased LC3II/I, PINK1 and parkin protein levels and MMP, which were reversed by ASC-EVs. HG inhibited mitophagy by suppressing the PINK1/parkin pathway to accelerate dermal fibroblast senescence. The PINK1/parkin pathway inhibition partly mitigated the effect of ASC-EVs. ASC-EVs promoted mitophagy by activating the PINK1/parkin pathway in vivo. ASC-EVs mediated mitophagy by activating the PINK1/parkin pathway, thereby impeding HG-induced rat dermal fibroblast senescence and promoting wound healing in DFU rats.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.