Abstract
Increasing evidence has showed that hypoxia inducible factor-1 (HIF1) has an important role in hypoxia-induced lipid accumulation, a common feature of solid tumors; however, its role remains to be fully elucidated. Adipose differentiation-related protein (ADRP), a structural protein of lipid droplets, is found to be upregulated under hypoxic conditions. In the present study, an MCF7 breast cancer cell line was used to study the role of ADRP in hypoxia-induced lipid accumulation. It was demonstrated that hypoxia induced the gene expression of ADRP in a HIF1-dependent manner. Increases in the mRNA and protein levels of ADRP was accompanied by increased HIF1A activity. In addition, a significant decrease in the mRNA and protein levels of ADRP were detected in presence of siRNA targeting HIF1A. Using a dual-luciferase reporting experiment and chromatin immunoprecipitation assay, the present study demonstrated that ADRP is a direct target gene of HIF1, and identified a functional hypoxia response element localized 33 bp upstream of the transcriptional start site of the ADRP gene. Furthermore, the present study demonstrated the role of ADRP in low density liporotein (LDL) and very-LDL uptake-induced lipid accumulation under hypoxia. The knockdown of ADRP did not reduce HIF1-induced lipid accumulation under hypoxia. Together, these results showed that ADRP may be not involved in HIF1-induced lipid accumulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.