Abstract
The pathogenesis of deterministic radiation damage is not clearly understood, but it has been reported that fibroinflammatory pathways are up-regulated. We hypothesized that the number of adipose-derived stem/stromal cells (ASCs) decline after radiotherapies, preventing normalization of fibrosis and angiogenesis, resulting in chronic radiation damages that progress over time. Dorsal skin of 8-week-old male BALB/cfC3H mice was irradiated with 10 Gy weekly for 4 weeks. At 1, 3, 6, 9, and 12 months after radiotherapy (n = 5, 5, 5, 5, and 4), tissue hemoglobin oxygen saturation, and time until epithelialization were evaluated. Skin biopsies were measured for thickness and CD34+/isolectin- stem/stromal cell count. Nonirradiated (NRT) controls were evaluated at each time point as well (n = 5 each). Compared with NRT controls, time until epithelialization was significantly longer at 1 month (28 ± 3, P < 0.01); not statistically different at 3 months (16 ± 2, P = 0.32); and lengthened over time at 6 months (20 ± 2, P = 0.21), 9 months (28 ± 2, P < 0.01), and 12 months (26 ± 3, P < 0.01), as did tissue oxygen saturation. The number of CD34+/isolectin- ASCs decreased over time, at 1 month (5.3 ± 1.3, P = 0.01), 3 months (6.0 ± 1.4, P = 0.03), 6 months (4.0 ± 0.8, P < 0.01), 9 months (1.7 ± 0.5, P < 0.01), and 12 months (0.3 ± 0.5, P < 0.01). The subcutaneous fatty layer was significantly thinner at 3 months (116 ± 33, P < 0.01), 6 months (147 ± 22, P = 0.02), 9 months (52 ± 12, P = 0.04), and 12 months (89 ± 19, P = 0.04), but not at 1 month (141 ± 18, P = 0.43). After 6 months postirradiation, the number of ASCs continued to decline over time, accompanied by irreversible progression of fibrosis, atrophy, and ischemia, which resulted in impaired wound healing.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have