Abstract
The human AdipoR2 and its C. elegans homolog PAQR-2 are multi-pass plasma membrane proteins that protect cells against membrane rigidification. However, how AdipoR2 promotes membrane fluidity mechanistically is not clear. Using 13C-labelled fatty acids, we show that AdipoR2 can promote the elongation and incorporation of membrane-fluidizing polyunsaturated fatty acids into phospholipids. To elucidate the molecular basis of these activities, we performed immunoprecipitations of tagged AdipoR2 and PAQR-2 expressed in HEK293 cells or whole C. elegans, respectively, and identified co-immunoprecipitated proteins using mass spectroscopy. We found that several of the evolutionarily conserved AdipoR2/PAQR-2 interactors are important for fatty acid elongation and incorporation into phospholipids. We experimentally verified some of these interactions, namely with the dehydratase HACD3 that is essential for the third of four steps in long-chain fatty acid elongation, and ACSL4 that is important for activation of unsaturated fatty acids and their channeling into phospholipids. We conclude that AdipoR2 and PAQR-2 can recruit protein interactors to promote the production and incorporation of unsaturated fatty acids into phospholipids.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have