Abstract

Obesity has emerged as a significant global health burden, exacerbated by serious side effects associated with existing anti-obesity medications. Celastrol (CLT) holds promise for weight loss but encounters challenges related to poor solubility and systemic toxicity. Here, we present chondroitin sulfate (CS)-derived micelles engineered for adipocyte-specific targeting, aiming to enhance the therapeutic potential of CLT while minimizing its systemic toxicity. To further enhance adipocyte affinity, we introduced a biguanide moiety into a micellar vehicle. CS is sequentially modified with hydrophilic metformin and hydrophobic 4-aminophenylboronic acid pinacol ester (PBE), resulting in the self-assembly of CLT-encapsulated micelles (MET-CS-PBE@CLT). This innovative design imparts amphiphilicity via the PBE moieties while ensuring the outward exposure of hydrophilic metformin moieties, facilitating active interactions with adipocytes. In vitro studies confirmed the enhanced uptake of MET-CS-PBE@CLT micelles by adipocytes, while in vivo studies demonstrated increased distribution within adipose tissues. In a diet-induced obese mouse model, MET-CS-PBE@CLT exhibited remarkable efficacy in weight loss without affecting food intake. This pioneering strategy offers a promising, low-risk, and highly effective solution to address the global obesity epidemic.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.