Abstract

Adipose tissue lipolysis is the catabolic process whereby stored triacylglycerol (TAG) is broken down by lipases into fatty acids and glycerol. Here, we review recent insights from transgenic mouse models. Genetic manipulations affecting lipases are considered first, followed by transgenic models of lipase co-factors and lastly non-lipase lipid droplet (LD)-associated proteins. The central role of hormone-sensitive lipase (HSL), long considered to be the sole rate-limiting enzyme of TAG hydrolysis, has been revised since the discovery of adipose triglyceride lipase (ATGL). It is now accepted that ATGL initiates TAG breakdown producing diacylglycerol, which is subsequently hydrolyzed by HSL. Furthermore, lipase activities are modulated by co-factors whose deletion causes severe metabolic disturbances. Another major advance has come from the description of the involvement of non-lipase proteins in the regulation of lipolysis. The role of perilipins has been extensively investigated. Other newly discovered LD-associated proteins have also been shown to regulate lipolysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.