Abstract

Engineering of efficient and safe materials remains a challenge for cancer therapy. Here, the lipid droplet, an organelle in adipocytes, is demonstrated to be a controllable and biocompatible vehicle to deliver anticancer drugs. It is validated that isolated lipid droplets maintain their key physiological functions to interact with other organelles and augment the therapeutic effect of cancer photodynamic therapy by encapsulation with a lipid-conjugated photosensitizer (Pyrolipid) through a variety of pathways, including generation of reactive oxygen species (ROS); lipid peroxidation; and endoplasmic reticulum (ER) stress. As such, the IC50 value of Pyrolipid is reduced by 6.0-fold when loaded into the lipid droplet. Of note, in vivo results demonstrate that engineered lipid droplets induce significant inhibition of tumor growth with minimal side effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.