Abstract
Adiabatic vacuum states are a well-known class of physical states for linear quantum fields on Robertson-Walker spacetimes. We extend the definition of adiabatic vacua to general spacetime manifolds by using the notion of the Sobolev wavefront set. This definition is also applicable to interacting field theories. Hadamard states form a special subclass of the adiabatic vacua. We analyze physical properties of adiabatic vacuum representations of the Klein-Gordon field on globally hyperbolic spacetime manifolds (factoriality, quasiequivalence, local definiteness, Haag duality) and construct them explicitly, if the manifold has a compact Cauchy surface.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have