Abstract
Pyrotechnic mixtures are susceptible to explosive decompositions. The aim of this paper is to generate thermal decomposition data under adiabatic conditions for fireworks mixtures containing potassium nitrate, barium nitrate, sulfur, and aluminum which are manufactured on a commercial scale. Differential scanning calorimeter is used for screening tests and accelerating rate calorimeter is used for other studies. The self heat rate data obtained showed onset temperature in the range of 275–295 °C for the fireworks atom bomb, Chinese cracker and palm leaf cracker. Of the three mixtures studied, atom bomb mixture had an early onset at 275 °C. The mixtures in general showed vigor exothermic decompositions. Palm leaf mixture exhibits multiple exotherm and reached a final temperature of 414 °C. The thermal decomposition contributes to substantial rise in system pressure. The heats of exothermic decomposition and Arrhenius kinetics were computed. The kinetic data are validated by comparing the predicted self heat rates with the experimental data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.