Abstract

The thermal stability of HMT under dynamic, isothermal and adiabatic conditions was investigated using differential scanning calorimeter (DSC) and accelerating rate calorimeter (ARC), respectively. It is found from the dynamic DSC results that the exothermic decomposition reaction appears immediately after endothermic peak, a coupling phenomenon of heat absorption and generation, and the endothermic peak and exothermic peak were indentified at about 277–289 and 279–296 °C (Tpeak) with the heating rates 1, 2, 4 and 8 °C min−1. The ARC results reveal that the initial decomposition temperature of HMT is about 236.55 °C, and the total gas production in decomposition process is 6.9 mol kg−1. Based on the isothermal DSC and ARC data, some kinetic parameters have been determined using thermal safety software. The simulation results show that the exothermic decomposition process of HMT can be expressed by an autocatalytic reaction mechanism. There is also a good agreement between the kinetic model and kinetic parameters simulated based on the isothermal DSC and ARC data. Thermal hazards of HMT can be evaluated by carrying out thermal explosion simulations, which were based on kinetic models (Isothermal DSC and ARC) to predict several thermal hazard indicators, such as TD24, TD8, TCL, SADT, ET and CT so that we can optimize the conditions of transportation and storage for chemical, also minimizing industrial disasters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.