Abstract
The evolution of a driven quantum system is said to be adiabatic whenever the state of the system stays close to an instantaneous eigenstate of its time-dependent Hamiltonian. The celebrated quantum adiabatic theorem ensures that such pure state adiabaticity can be maintained with arbitrary accuracy, provided one chooses a small enough driving rate. Here, we extend the notion of quantum adiabaticity to closed quantum systems initially prepared at finite temperature. In this case adiabaticity implies that the (mixed) state of the system stays close to a quasi-Gibbs state diagonal in the basis of the instantaneous eigenstates of the Hamiltonian. We prove a sufficient condition for the finite temperature adiabaticity. Remarkably, it turns out that the finite temperature adiabaticity can be more robust than the pure state adiabaticity with respect to increasing the system size. This can be the case for one-body systems with large Hilbert spaces, such as a particle in a large box, as well as for certain many-body systems. In particular, we present an example of a driven many-body system where, in the thermodynamic limit, the finite temperature adiabaticity is maintained, while the pure state adiabaticity breaks down. On the other hand, for generic many-body systems the scaling of the finite temperature adiabatic condition with the system size is exponential, analogously to pure state adiabatic conditions.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have