Abstract

The evolution of a driven quantum system is said to be adiabatic whenever the state of the system stays close to an instantaneous eigenstate of its time-dependent Hamiltonian. The celebrated quantum adiabatic theorem ensures that such pure state adiabaticity can be maintained with arbitrary accuracy, provided one chooses a small enough driving rate. Here, we extend the notion of quantum adiabaticity to closed quantum systems initially prepared at finite temperature. In this case adiabaticity implies that the (mixed) state of the system stays close to a quasi-Gibbs state diagonal in the basis of the instantaneous eigenstates of the Hamiltonian. We prove a sufficient condition for the finite temperature adiabaticity. Remarkably, it turns out that the finite temperature adiabaticity can be more robust than the pure state adiabaticity with respect to increasing the system size. This can be the case for one-body systems with large Hilbert spaces, such as a particle in a large box, as well as for certain many-body systems. In particular, we present an example of a driven many-body system where, in the thermodynamic limit, the finite temperature adiabaticity is maintained, while the pure state adiabaticity breaks down. On the other hand, for generic many-body systems the scaling of the finite temperature adiabatic condition with the system size is exponential, analogously to pure state adiabatic conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.