Abstract
We show that, in spatially periodic Hamiltonian systems driven by a time-periodic coordinate-independent (AC) force, the upper energy of the chaotic layer grows unlimitedly as the frequency of the force goes to zero. This remarkable effect is absent in any other physically significant systems. It gives rise to the divergence of the rate of the spatial chaotic transport. We also generalize this phenomenon for the presence of a weak noise and weak dissipation. We demonstrate for the latter case that the adiabatic AC force may greatly accelerate the spatial diffusion and the reset rate at a given threshold.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Communications in Nonlinear Science and Numerical Simulation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.