Abstract
We investigate the fusion cross-section and the fusion barrier distribution of [Formula: see text]O[Formula: see text]U at near- and sub-barrier energies. We use an interaction potential generated by the semi-microscopic double folding model-based on density dependent (DD) form of the realistic Michigan-three-Yukawa (M3Y) Reid nucleon–nucleon (NN) interaction. We studied the role of both the static and dynamic deformations of the target nucleus on the fusion process. Rotational and vibrational degrees of freedom of [Formula: see text]U-nucleus are considered. We found that the deformation and the octupole vibrations in [Formula: see text]U enhance its sub-barrier fusion cross-section. The signature of the the octupole vibrational modes of [Formula: see text]U appears clearly in its fusion barrier distribution profile.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.