Abstract

ABSTRACT An axisymmetric adhesion apparatus was used to characterize the adhesive and viscoelastic properties of acrylic block copolymer layers that behave as model pressure sensitive adhesives. The mechanisms of deformation were summarized and related to the structure and linear viscoelastic response of each model adhesive. In cases where the area between the adhesive layer and adhering surface remained circular and shrunk uniformly during detachment, the adhesive failure criterion can be quantified and compared to predictions from linear elastic fracture mechanics. The nature of adhesive failure can not be reconciled with these traditional, low-strain approaches, but is consistent with models of large strain elasticity, provided that the finite thickness of the adhesive layer is taken into account. A dimensionless ratio involving the adhesive strength, elastic modulus and adhesive layer thickness can be used to define the regime in which the adhesive failure criterion can be quantified with linear elastic fracture mechanics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call