Abstract
In this article we use a linear elastic fracture mechanics approach to characterize the adhesive performance of two commercially available pressure-sensitive adhesives (PSAs). An axisymmetric adhesion test involving the contact of a spherical indenter with a thin adhesive layer is used to generate “tack” curves for both adhesives. These curves describe the relationship between the normal loads and displacements during the test. Adhesive failure is understood in terms of crack propagation at the indenter/adhesive interface. We investigate the effects of adhesive layer thickness and crosshead velocity on the tack curves. Using fracture mechanics equations developed for thin layers, we show that the energy release rate is a unique function of the crack velocity for a given adhesive. Based on the tack curves and energy release rates, we discuss the coupling of the bulk and interfacial properties that produce the large adhesion energies typical of pressure-sensitive adhesives. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 3455–3472, 1999
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Polymer Science Part B: Polymer Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.