Abstract

Objective Our study is aimed at preparing an experimental adhesive (EA) and assessing the influence of adding 5-10 wt.% concentrations of zinc oxide (ZnO) nanoparticles on the adhesive's mechanical properties. Methods Field emission scanning electron microscopy (FESEM) and energy dispersive X-ray (EDX) spectroscopy were employed to investigate the morphology and elemental distribution of the filler nanoparticles. To examine the adhesive properties, microtensile bond strength (μTBS) testing, an investigation of the rheological properties, degree of conversion (DC), and analysis of the interface between the adhesive and dentin were carried out. Results The SEM micrographs of ZnO nanoparticles demonstrated spherical agglomerates. The EDX plotting confirmed the incidence of Zn and oxygen (O) in the ZnO nanoparticles. The highest μTBS was observed for nonthermocycled (NTC) 5 wt.% ZnO group (32.11 ± 3.60 MPa), followed by the NTC-10 wt.% ZnO group (30.04 ± 3.24 MPa). Most of the failures observed were adhesive in nature. A gradual reduction in the viscosity was observed at higher angular frequencies, and the addition of 5 and 10 wt.% ZnO to the composition of the EA lowered its viscosity. The 5 wt.% ZnO group demonstrated suitable dentin interaction by showing the formation of resin tags, while for the 10 wt.% ZnO group, compromised resin tag formation was detected. DC was significantly higher in the 0% ZnO (EA) group. Conclusion The reinforcement of the EA with 5 and 10 wt.% concentrations of ZnO nanoparticles produced an improvement in the adhesive's μTBS. However, a reduced viscosity was observed for both nanoparticle-reinforced adhesives, and a negotiated dentin interaction was seen for 10 wt.% ZnO adhesive group. Further research exploring the influence of more filler concentrations on diverse adhesive properties is recommended.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call