Abstract

An available dressing material which promotes skin tissue repair is of significant importance for public health. Moreover, dynamic wounds have special requirements for hydrogel dressings due to their motion state. Correspondingly, a double crosslinked hydrogel was prepared based on amide and coordination bonds from carboxylated polyvinyl alcohol (PC) and chitosan (CS)/Fe3+. The hydrogel exhibited excellent swelling ratio and suitable biodegradability, which is beneficial to the tissue repair. The results showed that hydrogels with crosslinked structure possessed better unique properties, such as stronger mechanical (78 kPa of G') and adhesion properties, and shorter self-healing time (5 mins), the change of which was consistent with dynamic wounds. The hydrogel exhibited not only antibacterial activity (98 % fatality rate), but also superior hemostatic capacity during the wound healing process. In addition, the hydrogel could shorten skin healing time to 14 days, and obviously accelerated skin structure reconstruction by promoting angiogenesis and collagen deposition. Therefore, double crosslinked hydrogel is a promising dynamic wound dressing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call