Abstract

The purpose of this work was to investigate the influence of a low-pressure, low-frequency ammonia plasma treatment on the wettability of polypropylene (PP) thin films and its consequences on the adhesion properties of such treated films to thermally evaporated aluminium coatings. The wettability was determined by contact angle measurements while the adherence was evaluated by a U-Peel test especially suited to thin flexible substrates with thin metallic layers. Furthermore, an image processing system was used to measure the percentage of the peeled-off metal. Measurements carried out on NH3 plasma-treated PP films revealed a sharp increase in the wettability and in the adhesion properties for treatment times as short as 1s. Electron-induced X-ray emission spectroscopy and X-ray photoelectron spectroscopy showed the formation of new chemical bonds at Al/NH3 plasma-treated PP film interfaces. The new types of bonds have been characterized by well-defined chemical states (C–NHx, CO–NH, Al–N–C) in the N 1s (and C 1s) spectra. The interfacial complexes Al–N–C and Al–N–CO are formed by the NH3 plasma treatment which creates at the PP surface active sites (N(C–NHx) and N(CO–NH)) which react with the evaporated aluminium atoms. These interfacial bonds play an important role in the enhancement of the metal/polymer adhesion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.