Abstract
The industrial use of polypropylene (PP) films is limited because of undesirable properties such as poor adhesion and printability. In the present study, a DC glow discharge plasma has been used to improve the surface properties of PP films and make it useful for technical applications. The change in hydrophilicity of modified PP film surface was investigated by contact angle (CA) and surface energy measurements as a function of exposure time. In addition, plasma-treated PP films have been subjected to an ageing process to determine the durability of the plasma treatment. Changes in morphological and chemical composition of PP films were analyzed by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The improvement in adhesion was studied by measuring T-peel and lap shear strength. The results show that the surface hydrophilicity has been improved due to the increase in the roughness and the introduction of oxygen-containing polar groups. The AFM observation on PP film shows that the roughness of the surface increased due to plasma treatment. Analysis of chemical binding states and surface chemical composition by XPS showed an increase in the formation of polar functional groups and the concentration of oxygen content on the plasma-processed PP film surfaces. T-peel and lap shear test for adhesion strength measurement showed that the adhesion strength of the plasma-modified PP films increased compared with untreated films surface.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.