Abstract

Nanostructured multilayers composed of alternate organic (alkyldithiol) and metallic (gold) layers are grafted onto glass plates and prepared in order to modify the mechanical and local dissipative properties of a thin surface layer of the substrate. The adhesion phenomenon between a polyisoprene elastomer and these layers is presented and verified by two theories, namely, Johnson, Kendall, Roberts (JKR) and linear elastic fracture mechanics. The increase in adhesion with contact time following a power law has been clearly noted.

Highlights

  • The adhesive failure energy of adhesive joints formed at a low contact pressure during a short contact time is called “tack strength” [1]

  • Tack is of considerable interest in the field of adhesives and bonding in particular for pressure-sensitive adhesives (PSAs) such as adhesive labels [3]

  • The principal objective of this work is to apply an appropriate micromechanical approach such as Johnson, Kendall, Roberts (JKR) and more typically, linear elastic fracture mechanics, in order to be able to correctly interpret the experimental results obtained by using the experimental apparatus developed in the laboratory

Read more

Summary

Introduction

The adhesive failure energy of adhesive joints formed at a low contact pressure during a short contact time is called “tack strength” [1]. Tack represents a limited case of adhesion. It is a property which reflects the ability of a material to adhere instantaneously to a rigid surface, under a low pressure carried out for a short time [2]. The respective influences on the adhesion of interfacial interactions and phenomena of local dissipation energy, immediately close to the interface, have not yet been fully established. Interfacial interactions and the dissipation energy both in the volume of materials and near the interface determine, to a large extent, the adhesion energy between two solids in contact

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.