Abstract

Nickel films were deposited by radio frequency magnetron sputtering on top of polycarbonate substrates. Surface energy of the substrate was measured by means of the contact angle technique. Effects of sputtering parameters on the critical load between the film and the substrate were determined by the universal mechanical testing system. Optimized fabrication parameters and their influence on the critical load between sputtered nickel films and polymer substrate were studied by means of the orthogonal experimental design. Increasing radio frequency power and time improved film critical load. The radio frequency power had a more pronounced effect on critical load than the sputter power. The plasma pretreatment with Ar gas modified the surface, leading to an increased surface energy, improving the chemical bonds between nickel and carbon atoms, and thereby enhanced the critical load. The adhesion mechanism is also discussed in this paper.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call