Abstract
To ensure good adhesion between a 200 nm thick silicon dioxide layer and a 4.5 μm thick hardcoat polymeric coating, a better understanding of mechanisms of adhesion at this interface is needed. To reach this purpose, focus is placed on two axes: characterizing mechanical properties of materials composing the system and in parallel, finding an applicable and effective method to quantify adhesion. Small dimension of SiO2 thin film makes it challenging to accurately characterize it. Hence the use of both nano-indentation and AFM to attempt assessment of SiO2 thin film elastic modulus Ef; taking into account limitations and uncertainty associated with each technique. Elastic modulus of SiO2 thin film determined by nano-indentation is roughly 50 GPa on a wafer substrate and 15 GPa on a lens substrate. As for AFM, modulus measured is approximatively 56 GPa on a wafer substrate and 22 GPa on a lens substrate. This highlights significant influence of substrate for both techniques. Impact on mechanical properties between SiO2 thin films under different intrinsic stresses was also investigated. Results suggest that higher density of SiO2 thin film leads to higher elastic modulus. To quantify adhesion, micro-tensile and micro-compression tests were performed. Micro-tensile experiments give ultimate shear strengths of hardcoat-substrate interface ranging from 9 to 14 MPa. Values of energy release rates of SiO2 / Hardcoat, range from 0.1 J/m² to 0.5 J/m², depending on moduli values found on wafer or lens substrate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: HAL (Le Centre pour la Communication Scientifique Directe)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.