Abstract

Abstract Polypropylene (PP) film was treated with radio-frequency-induced oxygen plasma, followed by the vacuum deposition of aluminum (Al) thin film, and the peel strength of the Al deposited PP film (Al/PP) was examined. The peel strength of plasma-treated PP film varied widely in the range of 6.7 to 157 N/m depending upon the plasma treatment conditions, whereas that of the untreated PP was 5.2 N/m. The peel strength was minimized at oxygen pressure near 13.3 Pa (0.1 Torr), and decreased with increasing discharge power. The peel strength rapidly increased at the initial stage of plasma treatment (∼ several seconds), decreased at the second stage, and slightly increased again at the third stage. A good agreement was found between the peel strength of Al/PP and the amounts of oxygen introduced onto the PP surface at the initial stage. A short-time treatment was very effective to improve the adhesion of Al/PP. At the end of the second stage, a large amount of carbon was detected by XPS on the Al layer of the peeled interface of Al/PP, which gave a minimum peel strength. Cohesive failure of PP film might have occurred. SEM photograph showed that PP surface was etched by oxygen plasma at the thrid stage. These peel behaviors of Al/PP were explained by the chemical and physical changes of the PP surface caused by oxygen plasma treatment: (1) introduction of O-functional groups onto the PP surface at the initial stage, (2) formation of weak booundary layers resulting from the partial scission of PP molecules at the second stage, and (3) plasma etching of the PP surface at the third stage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call