Abstract

The adhesion of wear-resistant diamond coating deposited on titanium was weakened by the porous titanium carbide interlayer, which was formed before film growth. In order to enhance substrate-coating adherence, a new pretreatment method was presented: Ti substrates were carbonized by hot filament chemical vapor deposition system, and then the carbonized substrates were ultrasonically vibrated using diamond micro-powder suspension. Diamond coatings were deposited by hot filament chemical vapor deposition as well. The effect of carbonization time on adhesion was investigated. The carbonized substrates and the interface between diamond coatings and substrates were characterized. The results showed that as the carbonization time increases, porous structures and cracks appear and increase on the surface of the substrate. The carbonized substrates possess high surface energy and thus the nucleation is promoted. After deposition, a dense and thin titanium carbide was observed. Ultrasonic after carbonization pretreatment can significantly enhance the adhesion of Ti-based diamond coatings by promoting nucleation and suppressing the formation of porous titanium carbide.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.