Abstract

Mostly used mechatronic devices are electrical energy converters into mechanical energy. Because of this reason it is very important to research them. One of the research types are mathematical mechatronic drive models. The research of drive was concluded using three methods: performing a physical experiment, performing a mathematical model, electromagnetic force, winding‘s inductivity solutions by calculating (2), (3), (4) dependence and performing mathematical model when the values are approximate from previously calculated dependency surfaces. The voltage of the energy source that was feeding the drive was changed and monitoring of motor moving part’s oscillating amplitude and force in the circuit. During the mathematical model, using finite elements method, the results are closer to the physical model than mathematical model, when electromagnetic force is calculated taking the first degree of the order function. Because of that reason mathematical model, using finite elements method is acceptable. It is worth to explore finite elements method usage in mathematical model. Ill. 8, bibl. 5 (in English; summaries in English, Russian and Lithuanian).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.