Abstract

We tested whether adenosine has differential effects on vascular endothelial growth factor (VEGF) expression under normoxic and hypoxic conditions, and whether A(1) or A(2) receptors (A(1)R; A(2)R) mediate these effects. Myocardial vascular smooth muscle cells (MVSMCs) from dog coronary artery were exposed to hypoxia (1% O(2)) or normoxia (20% O(2)) in the absence and presence of adenosine agonists or antagonists for 18 h. VEGF protein levels were measured in media with ELISA. VEGF mRNA expression was determined with Northern blot analysis. Under normoxic conditions, the adenosine A(1)R agonists, N(6)-cyclopentyladenosine and R(-)-N(6)-(2-phenylisopropyl)adenosine did not increase VEGF protein levels at A(1)R stimulatory concentrations. However, adenosine (5 microM) and the adenosine A(2)R agonist N(6)-[2-(3, 5-dimethoxyphenyl)-2-(2-methylphenyl)]ethyl adenosine (DPMA; 100 nM) increased VEGF protein levels by 51 and 132% and increased VEGF mRNA expression by 44 and 90%, respectively, in cultured MVSMCs under normoxic conditions. Hypoxia caused an approximately fourfold increase in VEGF protein and mRNA expression, which could not be augmented with exogenous adenosine, A(2)R agonist (DPMA), or A(1)R agonist [1,3-diethyl-8-phenylxanthine (DPX)]. The A(2)R antagonist 8-(3-chlorostyryl)-caffeine completely blocked adenosine-induced VEGF protein and mRNA expression and decreased baseline VEGF protein levels by up to approximately 60% under normoxic conditions but only by approximately 25% under hypoxic conditions. The A(1)R antagonist DPX had no effect. These results are consistent with the hypothesis that 1) adenosine increases VEGF protein and mRNA expression by way of A(2)R. 2) Adenosine plays a major role as an autocrine factor regulating VEGF expression during normoxic conditions but has a relatively minor role during hypoxic conditions. 3) Endogenous adenosine can account for the majority of basal VEGF secretion by MVSMCs under normoxic conditions and could therefore be a maintenance factor for the vasculature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call