Abstract

Diabetes can be controlled with insulin injections, but a curative approach that restores the number of insulin-producing β cells is still needed. Using a zebrafish model of diabetes, we screened ~7,000 small molecules to identify enhancers of β cell regeneration. The compounds we identified converge on the adenosine signaling pathway and include exogenous agonists and compounds that inhibit degradation of endogenously produced adenosine. The most potent enhancer of β cell regeneration was the adenosine agonist 5'-N-ethylcarboxamidoadenosine (NECA), which, acting through the adenosine receptor A2aa, increased β cell proliferation and accelerated restoration of normoglycemia in zebrafish. Despite markedly stimulating β cell proliferation during regeneration, NECA had only a modest effect during development. The proliferative and glucose-lowering effect of NECA was confirmed in diabetic mice, suggesting an evolutionarily conserved role for adenosine in β cell regeneration. With this whole-organism screen, we identified components of the adenosine pathway that could be therapeutically targeted for the treatment of diabetes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.