Abstract
Intrinsic regulation of hepatic arterial blood flow depends upon local concentrations of adenosine. The present data show that i.a. infusions of adenosine cause dilation of the hepatic artery and inhibition of arterial vasoconstriction induced by norepinephrine, vasopressin, angiotensin, and hepatic nerve stimulation. Vasoconstriction induced by submaximal nerve stimulation (2 Hz) and norepinephrine infusions (0.25 and 0.5 micrograms X kg-1 X min-1, i.p.v.) were equally inhibited by adenosine. Supramaximal nerve stimulation (8 Hz) was inhibited to a lesser extent. The data are consistent with the hypotheses that (a) adenosine causes nonselective inhibition of vasoconstrictor influences on the hepatic artery; and (b) adenosine antagonizes neurally induced vasoconstriction by a purely postsynaptic effect and does not decrease norepinephrine release. In contrast with the hepatic artery, the intrahepatic portal resistance vessels are not affected by even large doses of adenosine; neither responses in basal tone nor antagonism of vasoconstrictor effects of nerve stimulation, norepinephrine, or angiotensin could be demonstrated. The data are consistent with the hypothesis that the smooth muscle of the portal resistance vessels does not contain adenosine receptors, whereas adenosine receptors on the smooth muscle of the hepatic arterial resistance vessels are of major regulatory importance. Whether endogenous levels of adenosine can reach sufficient concentration to modulate endogenous constrictors remains to be determined.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have