Abstract

Abnormal accumulation of aggregated α-synuclein (aSyn) is a hallmark of sporadic and familial Parkinson's disease (PD) and related synucleinopathies. Recent studies suggest a neuroprotective role of adenosine A2A receptor (A2AR) antagonists in PD. Nevertheless, the precise molecular mechanisms underlying this neuroprotection remain unclear. We assessed the impact of A2AR blockade or genetic deletion (A2AR KO) on synaptic plasticity and neuronal cell death induced by aSyn oligomers. We found that impairment of LTP associated with aSyn exposure was rescued in A2AR KO mice or upon A2AR blockade, through an NMDA receptor-dependent mechanism. The mechanisms underlying these effects were evaluated in SH-SY5Y cells overexpressing aSyn and rat primary neuronal cultures exposed to aSyn. Cell death in both conditions was prevented by selective A2AR antagonists. Interestingly, blockade of these receptors did not interfere with aSyn oligomerization but, instead, reduced the percentage of cells displaying aSyn inclusions. Altogether, our data raise the possibility that the well-documented effects of A2AR antagonists involve the control of the latter stages of aSyn aggregation, thereby preventing the associated neurotoxicity. These findings suggest that A2AR represent an important target for the development of effective drugs for the treatment of PD and related synucleinopathies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.