Abstract

ABSTRACTIn the brain, purines such as ATP and adenosine can function as neurotransmitters and co‐transmitters, or serve as signals in neuron–glial interactions. In thalamocortical (TC) projections to sensory cortex, adenosine functions as a negative regulator of glutamate release via activation of the presynaptic adenosine A1 receptor (A1R). In the auditory forebrain, restriction of A1R‐adenosine signaling in medial geniculate (MG) neurons is sufficient to extend LTP, LTD, and tonotopic map plasticity in adult mice for months beyond the critical period. Interfering with adenosine signaling in primary auditory cortex (A1) does not contribute to these forms of plasticity, suggesting regional differences in the roles of A1R‐mediated adenosine signaling in the forebrain. To advance understanding of the circuitry, in situ hybridization was used to localize neuronal and glial cell types in the auditory forebrain that express A1R transcripts (Adora1), based on co‐expression with cell‐specific markers for neuronal and glial subtypes. In A1, Adora1 transcripts were concentrated in L3/4 and L6 of glutamatergic neurons. Subpopulations of GABAergic neurons, astrocytes, oligodendrocytes, and microglia expressed lower levels of Adora1. In MG, Adora1 was expressed by glutamatergic neurons in all divisions, and subpopulations of all glial classes. The collective findings imply that A1R‐mediated signaling broadly extends to all subdivisions of auditory cortex and MG. Selective expression by neuronal and glial subpopulations suggests that experimental manipulations of A1R‐adenosine signaling could impact several cell types, depending on their location. Strategies to target Adora1 in specific cell types can be developed from the data generated here. Anat Rec, 301:1882–1905, 2018. © 2018 The Authors. The Anatomical Record published by Wiley Periodicals, Inc. on behalf of American Association of Anatomists.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.