Abstract
Auditory dysfunction, including hypersensitivity and tinnitus, is a common symptom of autism spectrum disorder (ASD). Prenatal exposure to the antiseizure medication valproic acid (VPA) significantly increases the risk of ASD in humans and similar exposure is utilized as an animal model of ASD in rodents. Animals exposed to VPA in utero have abnormal activity in their auditory cortex in response to sounds, fewer neurons, abnormal neuronal morphology, reduced expression of calcium-binding proteins, and reduced ascending projections to the central nucleus of the inferior colliculus. Unfortunately, these previous studies of central auditory circuits neglect the medial geniculate (MG), which serves as an important auditory relay from the midbrain to the auditory cortex. Here, we examine the structure and connectivity of the medial geniculate (MG) in rats prenatally exposed to VPA. Our results indicate that VPA exposure results in significantly smaller and fewer neurons in the ventral and medial nuclei of the MG. Furthermore, injections of the retrograde tract tracer fluorogold (FG) in the MG result in significantly fewer FG+ neurons in the inferior colliculus, superior olivary complex, and ventral cochlear nucleus. Together, we interpret these findings to indicate that VPA exposure results in hypoplasia throughout the auditory circuits and that VPA has a differential impact on some long-range axonal projections from brainstem centers to the thalamus. Together, our findings support the widespread impact of VPA on neurons and sensory circuits in the developing brain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.