Abstract
6d superconformal field theories (SCFTs) are the SCFTs in the highest possible dimension. They can be geometrically engineered in F-theory by compactifying on non-compact elliptic Calabi-Yau manifolds. In this paper we focus on the class of SCFTs whose base geometry is determined by −2 curves intersecting according to ADE Dynkin diagrams and derive the corresponding mirror Calabi-Yau manifold. The mirror geometry is uniquely determined in terms of the mirror curve which has also an interpretation in terms of the Seiberg-Witten curve of the four-dimensional theory arising from torus compactification. Adding the affine node of the ADE quiver to the base geometry, we connect to recent results on SYZ mirror symmetry for the A case and provide a physical interpretation in terms of little string theory. Our results, however, go beyond this case as our construction naturally covers the D and E cases as well.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have