Abstract

Crystalline adducts of zinc and copper(II) dithiocarbamate complexes with dibutyl-and diisobutylamines of the general formula [M(NHR′2)(S2CNR2)2] (M = Zn, 63Cu, and 65Cu; R = CH3 and C2H5; R2 = (CH2)4O; R′ = C4H9 and i-C4H9) were synthesized. Their structures and spectroscopic properties were studied by EPR and solid-state natural abundance 13C and 15N CP/MAS NMR spectroscopy. Experimental EPR data and computer-assisted modeling confirmed the individual character of copper(II) adducts. The geometries of the copper coordination polyhedra were found to be intermediate between a tetragonal pyramid and a trigonal bipyramid (TBP). The contributions from TBP to the geometries of the adducts obtained were calculated from the EPR data. According to the X-ray diffraction data, the adduct of zinc diethyldithiocarbamate with diisobutylamine exists in two isomeric forms. The 13C and 15N CP/MAS NMR signals were assigned to the atomic positions in two crystallographically independent conformer molecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.