Abstract

Membrane capacitive deionization (MCDI) is a unique electrochemical separations platform that allows for energy recovery during electrode regeneration. Similar to other electrochemical separation technologies producing deionized water (e.g. electrodialysis), ohmic resistances in the spacer channel significantly hampers the performance and energy efficiency of the process. This work devised a series of ionomer coated nylon mesh nets to address spacer channel resistances in MCDI. Under constant current operation, the ionomer coated nylon meshes displayed a 300 mV lower cell voltage rise during deionization while sustaining the same deionization rate. Furthermore, energy recovery was improved by 1.4x to 5.5x depending on the saline feed concentration. The lower cell voltage rise during deionization combined with the greater energy recovery with ionomer coated meshes resulted in energy normalized adsorbed salt (ENAS) values that were 2x to 3x greater. Addressing the spacer channel resistances in MCDI allowed for 8% to 19% increase in current density without the cell voltage exceeding 1.6 V—the upper bound set for mitigating parasitic reactions. Operating at higher current density leads to smaller MCDI units for a given deionization requirement and has implications for reducing the capital costs of the MCDI unit.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.