Abstract

A renewable energy design optimization model is proposed to plan investments in power, water, and heat technologies. The intermittent nature of renewables requires that these models capture the variability and complementarity of resources at high spatial and temporal resolutions. However, most planning models use time-series reduction methods that, while capturing data variance, often smooth out extreme weather or demand patterns. To account for extreme patterns and design reliable energy systems, we propose a clustering-optimization framework that considers extreme weather days. This framework is applied to design an integrated multi-sector energy system for the Neom region in Saudi Arabia. Our results show that fully renewable systems designed without considering extreme days could not meet demands and instead required external power or water supplies during a post-optimization simulation. Once extreme days were considered in the optimization, system reliability increased at the expense of larger generation and storage capacity investments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.