Abstract

We study the interplay between additivity (as in the Cauchy functional equation), subadditivity and linearity. We obtain automatic continuity results in which additive or subadditive functions, under minimal regularity conditions, are continuous and so linear. We apply our results in the context of quantifier weakening in the theory of regular variation, completing our programme of reducing the number of hard proofs there to zero.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.