Abstract

Hydrogen getters consisting of 1,4-bis[phenylethynyl] benzene (DEB) and a carbon-supported palladium catalyst (Pd/C) have been used to mitigate the accumulation of unwanted hydrogen gas in a sealed system. Here, we report the formulation of a composite resin consisting of silicone polymer plus DEB-Pd/C as an active getter material and the additive manufacturing of silicone getter composites with a high getter content (up to 50 wt %). NMR and DSC studies suggest no reaction between the silicone polymer resin and DEB even at elevated curing temperatures (75 °C). Getter composites with varying amounts of getter and filler were formulated, and their rheological properties were studied. The two composite resins with good printability parameters and different getter contents were chosen to make 3D-printed samples. The hydrogen absorption capacity of these samples was studied at a low hydrogen pressure of 750 mTorr of pure hydrogen. The getter composite with 50 wt% of getter showed normalized DEB conversion of 83%, with the hydrogen adsorption capacity of 100.2 mL of H2 per gram of polymer getter composite.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.