Abstract

Additive manufacturing (AM) technologies are appreciated all over the world for their great versatility, including the possibility to realize very complex shapes in one step, increasing the design freedom and significantly lowering the production costs. There are different AM processes and the criterion used to classify them is not unique; however, the most common AM technologies for metals can be broadly classified into two categories: Powder Bed Fusion (PBF) and Directed Energy Deposition (DED). Both induce defectiveness in the component, such as concentrated residual stresses, surface roughness, delamination, porosity, and Lack of Fusion (LOF) defects that decrease mechanical resistance and lead to poor fatigue life behavior. The aim of this work is to provide a full overview of AM defects with the associated damage mechanism. The work is completed with a description of the process parameters optimization to minimize the induced defects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.