Abstract

Metal additive manufacturing provides a path to optimized component design with significant realized advantages in the medical and aerospace industries. Limitations to expansion to other industries, e.g. automotive, and to enabling supply chain relief is the limited number of materials available and the ability to produce material on demand. Current additive manufacturing powder feedstock is produced at large, remote atomization facilities with long lead times. Here we identify a new “on-demand” powder production technology, cold mechanically derived, able to produce non-spherical powder for additive manufacturing, with high efficiency, and wrought equivalent material properties. We analyze the powder flow characteristics and mechanical properties comparing typical gas atomized with the new process demonstrating wrought property equivalence despite power sourcing. This research will enable expansion of additional alloy systems as well as encourage the processing of non-spherical powders to expand the available supply base of new alloys for additive manufacturing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.