Abstract

The application of nanoscale energetic materials (nEMs) composed of metal and oxidizer nanoparticles (NPs) in thermal engineering systems is limited by their relatively high sensitivity and complex three-dimensional (3D) formability. Polymers can be added to nEMs to lower the sensitivity and improve the formability of 3D structures. In this study, the effect of the addition of polyethylene oxide (PEO; polymer) on the combustion characteristics of aluminum (Al; fuel)/copper oxide (CuO; oxidizer)-based nEMs is investigated. With an increase in the PEO content, the resulting PEO/nEM composites are desensitized to relatively high electrical spark discharges. However, the maximum explosion-induced pressure decreases significantly, and the combustion flame fails to propagate when the PEO content exceeds 15 wt.%. Therefore, the optimal PEO content in a nEM matrix must be accurately determined to achieve a compromise between sensitivity and reactivity. To demonstrate their potential application as composite solid propellants (CSPs), 3D-printed disks composed of PEO/nEM composites were assembled using additive manufacturing. They were cross-stacked with conventional potassium nitrate (KNO3)/sucrose (C12H22O11)-based disk-shaped CSPs in a combustion chamber of small rocket motors. Propulsion tests indicated that the specific impulse of KNSU/PEO/nEM (nEMs: 3.4 wt.%)-based CSPs was at a maximum value, which is approximately three times higher than that of KNSU CSPs without nEMs. This suggests that the addition of an optimized amount of polymer to nEMs is beneficial for various CSPs with compromised sensitivity and reactivity and excellent 3D formability, which can significantly enhance the propulsion of small projectiles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.