Abstract

Abstract Additive manufacturing represents a powerful tool for the fabrication of parts with complex shapes by the deposition and the consolidation of materials as opposed to subtractive manufacturing methodology. Selective laser sintering (SLS), one of the most popular powder bed fusion (PBF) technologies for thermoplastic part production, has demonstrated extensive applications in various industrial sectors. The process involves the deposition of homogeneous powder layers and employs a laser source to selectively melt a powder bed according to a CAD model. Due to its layer-by-layer nature, voids and pores are inevitably introduced in the fabricated thermoplastic parts. Porosity represents one of the major limitations of this technology being one of the main causes of the variation of the mechanical properties. With the intention of providing support for reducing the porosity and thus increasing the quality and performance of the final product, in this paper, a brief review was carried out focusing on the SLS process parameters and their interaction with the porosity of the product. In addition, an in-depth look was given to the mechanisms of formation and consolidation of pores within parts made of polymeric material.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call